Biorders with Frontier
نویسندگان
چکیده
This paper studies an extension of biorders that has a “frontier” between the relation and the absence of relation. This extension is motivated by a conjoint measurement problem consisting in the additive representation of ordered coverings defined on product sets of two components. We also investigate interval orders and semiorders with frontier.
منابع مشابه
Bistable Biorders: A Sequential Domain Theory
We give a simple order-theoretic construction of a Cartesian closed category of sequential functions. It is based on bistable biorders, which are sets with a partial order — the extensional order — and a bistable coherence, which captures equivalence of program behaviour, up to permutation of top (error) and bottom (divergence). We show that monotone and bistable functions (which are required t...
متن کاملSequentiality in Bounded Biorders
We study a notion of bounded stable biorder, showing that the monotone and stable functions on such biorders are sequential. We construct bounded biorder models of a range of sequential, higher-order functional calculi, including unary PCF, (typed and untyped) call-by-value and lazy λ-calculi, and non-deterministic SPCF. We prove universality and full abstraction results for these models by red...
متن کاملNumerical representations of binary relations with thresholds: A brief survey
This purpose of this text is to present in a self-contained way a number of classical results on the numerical representation of binary relations on arbitrary sets involving a threshold. We tackle the case of linear orders, weak orders, biorders, interval orders, semiorders and acyclic relations.
متن کاملNumerical representations of binary relations with thresholds: A brief survey
This purpose of this text is to present in a self-contained way a number of classical results on the numerical representation of binary relations on arbitrary sets involving a threshold. We tackle the case of linear orders, weak orders, biorders, interval orders, semiorders and acyclic relations.
متن کاملSequential algorithms as bistable maps
We exhibit Cartwright-Curien-Felleisen’s model of observably sequential algorithms as a full subcategory of Laird’s bistable biorders, thereby reconciling two views of functions: functions-as-algorithms (or programs), and functions-as-relations. We then characterize affine sequential algorithms as affine bistable functions in the full subcategory of locally boolean orders.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Order
دوره 28 شماره
صفحات -
تاریخ انتشار 2011